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We examine various recently proposed translationally invariant discretizations of the well-known �4 field
theory. We compare and contrast the properties of their fundamental solutions including the nature of their
kink-type solitary waves and the spectral properties of the linearization around such waves. We study these
features as a function of the lattice spacing h, as one deviates from the continuum limit of h→0. We then
proceed to a more “stringent” comparison of the models, by discussing the scattering properties of a kink-
antikink pair for the different discretizations. These collisions are well known to possess properties that quite
sensitively depend on the initial speed even at the continuum limit. We examine how typical model behaviors
are modified in the presence �and as a function� of discreteness. One of the surprising trends that we observe
is the increasing elasticity of kink collisions with deviation from the continuum limit. Another general feature
is that the most inelastic kink collisions are observed in the classical discrete �4 model, while they are more
elastic in the four studied translationally invariant models.
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I. INTRODUCTION

In the past few years, a variety of physical applications
ranging from Bose-Einstein condensates in optical lattices
�1� to arrays of waveguides in nonlinear optics �2� and even
to the dynamics of DNA �3� have stimulated an enormous
growth in the study of discrete models and the differential-
difference equations that describe them. These models have a
twofold role and importance. On the one hand, they serve as
discretizations of the corresponding continuum field theories;
however, on the other hand, they may also be important
physical models in their own right. For instance, discrete
double well models arise in varied physical settings such as
electronic excitations in conducting polymers �4�, structural
phase transitions in ferroic materials �5� �i.e., on crystal lat-
tices� in ferroelectrics, ferromagnets, and ferroelastics. Fur-
thermore, models of topological defects �such as disloca-
tions�, their interactions, and movement are particularly
dependent on lattice discreteness and thus on the so-called
Peierls-Nabarro barrier that it imposes �6�.

An important class of models �and discretizations thereof�
that is relevant to a wide variety of applications consists of
the so-called Klein-Gordon-type equations �7�. Arguably, one
of the most celebrated examples of a related type is the
Fermi-Pasta-Ulam �FPU� model. The latter was originally
proposed in an attempt to explain heat conduction in nonme-
tallic lattices and examine a potential equipartition of energy
among normal modes, but in the process became one of the
key paradigms of nonlinear science �with its continuum lead-
ing to the famous Korteweg–de Vries equation and the birth
of the notion of the soliton�. A detailed exposition of the

diverse aspects of nonlinear science affected in the past half
century by the FPU model can be found in the recent volume
�8�. One of the particularly interesting equations within the
Klein-Gordon family is the so-called �4 model �9�, featuring
a wave equation with a cubic nonlinear �odd-power� polyno-
mial added to it. This model has been physically argued as
being of relevance in describing domain walls in cosmologi-
cal settings �10�, but also structural phase transitions,
uniaxial ferroelectrics, or even simple polymeric chains; see,
e.g., �11� and references therein. Clearly, the question of dif-
ferent discretizations and their effect on the interaction be-
tween topological defects, scattering, and associated dynami-
cal scenarios is important to a large class of physical
systems. A particularly intriguing feature that was discovered
early on in the continuum limit was the existence of a fractal
structure �10� in the collisions between the fundamental non-
linear waves �a kink and an antikink� in this model. This is a
topic that was initiated by the numerical investigations of
Refs. �11,12� �and later studied in �9�� and it is still under
active investigation �see, e.g., the recent mathematical analy-
sis of the relevant mechanism provided in Ref. �13��.

On the other hand, more recently, an issue that has con-
cerned research work has been how to produce discretiza-
tions of such continuum models �such as the �4 model or its
complex cousin, the nonlinear-Schrödinger equation �14��
that preserve some of the important properties of the corre-
sponding continuum limit. One of the nontrivial aspects of
this endeavor is the generation of discrete models in space
that maintain some of the key invariances of their continuum
siblings. For instance, in the uniform continuum medium,
solutions can be shifted arbitrarily along a certain direction x
by any x0 �x is the spatial coordinate and x0=const�, due to
the underlying translational invariance. However, discretiza-
tions generically fail to maintain that feature and in the most
straightforward versions thereof, equilibrium static solutions
exist for a discrete rather than a continuum set of x0 �7�.
Some of these equilibrium solutions correspond to energy
maxima and are unstable, while others, corresponding to en-
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ergy minima, are stable. The difference between such
maxima and minima of the energy is typically referred to as
the Peierls-Nabarro barrier �PNB�. One of the topics of in-
tense research efforts in the past few years has been to de-
velop discretizations that do not present such energy barriers;
this is done in the hope that the latter class of models may
provide more faithful representations of their continuum
counterparts, regarding both symmetry properties and travel-
ing solution features.

The result of the above considerations has been the sys-
tematic construction of a large class of nonintegrable discrete
Klein-Gordon equations free of the Peierls-Nabarro barrier
�PNB-free�. Since the standard discretization of the con-
tinuum �4 model conserves the energy but does have a PNB,
Speight and co-workers �15–17� originally used a
Bogomol’nyi argument �18�, in order to eliminate that bar-
rier. It has been demonstrated that one of their models de-
scribes the nearest-neighbor interactions in a chain of dipoles
�19�. A later successful attempt �that produced multiple PNB-
free models� was based on a different perspective, namely
the one of associating the PNB-free models to momentum-
conserving discretizations �20�. Subsequently, yet another
such model was recently proposed in �21�. Furthermore,
these approaches were systematized and generalized through
their formulation by means of a two-point discrete version of
the first integral of the static continuum Klein-Gordon equa-
tion �22–24�. We should note in passing that similar discreti-
zation efforts have recently been extended to the nonlinear
Schrödinger equation �25–27�.

One of the important questions that naturally emerges in
the presence of this extensive recent literature is, indeed,
how accurately we may expect these models to track the
continuum limit behavior and how various properties are af-
fected by the discreteness, as a function of its characteristic
parameter �the lattice spacing h, which should be compared
to the kink width in the continuum equation, is usually esti-
mated as �1�. Already, to some extent, there have been con-
cerns regarding that question in that simulations of more
sensitive phenomena such as kink collisions in the “Speight
discretization” �15,17� were only faithful to the continuum
limit for fine lattices �h�0.1 or less� �28�. Here, we examine
this question a bit more broadly and in more detail through
numerical computations and analytical considerations com-
paring and contrasting five different discretizations of the
continuum �4 field theory. Among them is the “standard,”
classical �4 discretization �model 1� �11�, two energy-
conserving discretizations, namely the Speight-one �model 2�
�15� and the one of Ref. �21� also labeled CKMS hereafter
�model 3�, and two momentum-conserving discretizations
stemming from Ref. �20�, labeled K1 �model 4� and K2
�model 5�, respectively. For each one of these models, we
begin by examining the properties of the fundamental build-
ing block nonlinear wave solutions, namely the discrete
kinks �and antikinks�. We show how to obtain such solutions
analytically or semianalytically and subsequently examine
the spectrum of small-amplitude excitations �linearization�
around them, among other reasons �such as stability� because
this spectrum plays a nontrivial role in the outcome of wave
interactions. Finally, we focus on the latter �i.e., on solitary
wave collisions between kinks and antikinks� and attempt to

extract salient features of such interactions as a function of
the lattice spacing h, for a set of different speeds and for
different initial separations between the kinks.

Our main findings can be summarized as follows:
�i� The different models yield kink profiles that are differ-

ent between them and from the continuum limit. These dif-
ferences are strongest for the CKMS model and are found to
lead to shrinking kinks for the energy conserving models
1–3, while they lead to expanding kinks in models 4-5. The
deviation from the relevant continuum profile grows as h2.

�ii� The boosting of the kinks in order to induce their
collision excites their internal modes. This plays a significant
role in the collisions, since for different initial distances, the
excitation of the internal mode will carry a different phase �at
the moment of collision� and may accordingly lead to differ-
ent collision outcomes.

�iii� The different models have different properties as re-
gards the elasticity of their collisions. The most inelastic col-
lisions occur in the standard discretization of model 1. Per-
haps the next least elastic collisions occur in the CKMS
model 3, then K1 �model 4�, Speight �model 2�, and K2
�model 5�, in order of increasing elasticity.

�iv� The elasticity of collisions changes as a function of
the lattice spacing. In fact, remarkably so, the collisions are
more elastic for larger values of the lattice spacing. This is
also demonstrated in the decreasing dependence of the criti-
cal velocity �beyond which the solitary waves separate after
one collision� as a function of h.

The above findings suggest that the kinks in the transla-
tionally invariant lattices are more robust with respect to
their collisions than the kinks in the classical discrete model.
Furthermore, their collisions can be near-elastic even for
fairly large values of the discreteness parameter. Conse-
quently, the translationally invariant lattices have better
transport properties since more robust kinks can transport
energy, charge, mass, etc., more effectively. These features
may become important even experimentally as some of the
translationally invariant models are starting to emerge in re-
alistic physical applications; see, e.g., �19�.

The presentation of our results will be structured as fol-
lows. In Sec. II, we will present the various models and, in
Sec. III, compare their kink solutions and spectral properties.
In Sec. IV, we will examine the properties of the collisions of
the different models focusing on a few typical speeds of the
incoming waves for different initial distances and for differ-
ent initial lattice spacings. Finally, in Sec. V, we will sum-
marize our findings and present our conclusions as well as
some open questions for future study.

II. �4 FIELD THEORY AND ITS
VARIOUS DISCRETIZATIONS

Starting from the continuum limit of the model, we note
that the one-dimensional �4 field theory is described by the
Lagrangian L=K-E with the kinetic and potential energy
functionals defined, respectively, by

K =
1

2
�

−�

�

�t
2dx , �1�
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E =
1

2
�

−�

�

��x
2 + �1 − �2�2�dx , �2�

where ��x , t� is the scalar field of interest and subscript in-
dices mean partial derivatives with respect to the correspond-
ing variable. The resulting Euler-Lagrange equation is ob-
tained by demanding that � be a local extremum of the
action S=�Ldt, and it reads

�tt = �xx + 2��1 − �2� . �3�

The following kink �antikink� solution to Eq. �3�,

��x,t� = ± tanh
x − x0 − vt
	1 − v2

, �4�

is one of the simplest examples of topological solitons. In
Eq. �4�, v is the kink velocity and x0 is its arbitrary initial
position �signalling the translational invariance of the con-
tinuum model discussed in the previous section�.

The first integral of the static version of Eq. �3�,

U�x� 
 �x
2 − �1 − �2�2 = 0, �5�

plays an important role in our considerations. The integration
constant was set to zero in Eq. �5�, which is relevant for
obtaining the kink solutions. The first integral can also be
taken in a modified form, e.g., as

u�x� 
 ± �x − 1 + �2 = 0. �6�

We study various lattice dynamical equations obtained by
discretizing Eq. �3� on the lattice x=nh, where n
=0, ±1, ±2. . ., and h is the lattice spacing. The general form
of the lattice equations studied herein is

�̈n = �2�n + F��n−1,�n,�n+1� 
 D��n−1,�n,�n+1� , �7�

where

�2�n =
1

h2 ��n−1 − 2�n + �n+1� , �8�

and, in the continuum limit �h→0�,

F��n−1,�n,�n+1� → 2��1 − �2� . �9�

As mentioned previously, of particular interest will be the
lattices whose static solutions, satisfying the three-point
static problem corresponding to Eq. �7�,

D��n−1,�n,�n+1� = 0, �10�

can be found from a reduced two-point problem of the form

U��n−1,�n� = 0, �11�

or of the form

u��n−1,�n� = 0. �12�

Equations �11� and �12� are the discretized first integrals
�DFIs� obtained by discretizing Eqs. �5� and �6�, respectively
�22,24�.

Lattices whose static solutions can be found from the two-
point DFI are called translationally invariant because the
equilibrium solution can be obtained iteratively from the

nonlinear algebraic equation starting from an arbitrary ad-
missible value �n. In other words, translationally invariant
lattices support a continuum rather than a discrete set of
equilibrium solutions parametrized, e.g., by the value �n.

Let us now calculate the PN barrier in the models whose
static solutions can be found from a two-point DFI, i.e., in
the translationally invariant lattices. We consider a con-
tinuum set of equilibrium solutions parametrized by the
value �n, in the range �n� ��n

�1� ,�n
�2��, assuming that all val-

ues of �n within this range are admissible.
The work done by the interparticle and the background

forces �originating from the discretized background poten-
tial� to move �quasistatically� the nth particle from the con-
figuration ��1� to the configuration ��2� is

Wn = �
�n

�1�

�n
�2�

D��n−1,�n,�n+1�d�n, �13�

and the total work performed to “transform” the whole chain
from ��1� to ��2� is

W = �
n=−�

�

Wn. �14�

However, in the translationally invariant models, the avail-
ability of a path of equilibrium configurations allowing to
transit from ��1� to ��2� leads to D=0 and thus Wn=0 for all
n. This, in turn, results in W=0. This result suggests that
there is no energy cost to transform quasistatically one equi-
librium solution into another through a continuous set of
equilibrium solutions. In other words, the height of the
Peierls-Nabarro barrier calculated along this path is zero.
For Hamiltonian lattices, the total work is path-independent
�and equal to the potential-energy difference between the fi-
nal and initial state� and we can claim that, in such dynami-
cal lattices, the PN potential is zero. For non-Hamiltonian
lattices the work is path dependent and we can only claim the
absence of the PN barrier along the path considered above
�which, however, is a natural one�. While there are math-
ematical subtleties as regards whether this notion yields zero
PNB more generally for translationally invariant lattices, this
is the definition of PNB-free models that will be used herein.
A more detailed examination of the, admittedly interesting,
pertinent topics is outside the scope of the present study
focusing on the comparison between different discrete �4

models and will be delegated to a future publication.
In the following, we consider various discrete �4 models

reported in the literature describing their kink solutions, their
spectra of small-amplitude vibrations around vacuum solu-
tions ��n= ±1�, and also the spectra of lattices containing
one static kink, revealing the kink’s internal vibrational
modes. Physical quantities conserved by the lattices are
given, if they exist. These results will be quite relevant also
in the discussion of kink-antikink collision outcomes.

A. Classical discretization: Model 1

The “standard” discretization of Eq. �3� is �11�
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�̈n = �2�n + 2�n�1 − �n
2� , �15�

and this is the only lattice in this study that possesses a
Peierls-Nabarro barrier. Model 1 conserves the Hamiltonian
�total energy�

H1 =
h

2�
n
��̇n

2 +
��n+1 − �n�2

h2 + �1 − �n
2�2
 . �16�

Static kink solutions in model 1 exist only for those waves
centered at a lattice site �unstable� or in the middle between
two neighboring lattice sites �stable�. Solutions can be found
by various numerical techniques. As a first approximation,
one can adopt Eq. �4� to write the following approximate
static kink solution:

�n = ± tanh�h�n − x0�� . �17�

One can use this ansatz in a fixed-point scheme �such as a
Newton method� for x0=0 or x0=1/2 �mod 1�, to identify the
exact discrete static solutions �n

0. Subsequently, introducing
the ansatz �n�t�=�n

0+�n�t� �where �n
0 is an equilibrium so-

lution and �n�t� is a small perturbation�, we linearize Eq. �15�
with respect to �n and obtain the following equation:

�̈n = �2�n + 2�n − 6��n
0�2�n. �18�

For the small-amplitude phonons, �n=exp�ikn+ i�t�, with
frequency � and wave number k, Eq. �18� is reduced to the
following dispersion relation:

�2 =
4

h2 sin2� k

2
� − 2 + 6��n

0�2. �19�

From Eq. �19�, the spectrum of the vacuum solution, �n
0

= ±1, is

�2 = 4 +
4

h2 sin2� k

2
� . �20�

The spectrum of the lattice when linearizing around a static
kink is shown in Fig. 1.

B. Energy-conserving model 2

Here we use the following DFI obtained from Eq. �6�:

u2 
 ±
�n − �n−1

h
− 1 +

�n−1
2 + �n−1�n + �n

2

3
= 0. �21�

The Hamiltonian, H=K+E, defined by Eq. �1� and Eq. �2�,
can be discretized as follows:

H2 = h�
n

� �̇n
2

2
+ u2

2� , �22�

which gives the equations of motion of the energy-
conserving model after Speight �15,17�,

�̈n = − u2��n−1,�n�
�

��n
u2��n−1,�n�

− u2��n,�n+1�
�

��n
u2��n,�n+1�

= �1 +
h2

3
��2�n + 2�n −

1

9
�2�n

3 + ��n + �n−1�3

+ ��n + �n+1�3� . �23�

It is clear that the static solutions to Eq. �23� can be found
from the two-point problem, Eq. �21�. We have

�n±1 = −
�n

2
�

3

2h
±

	3

2
	− �n

2 ±
6

h
�n +

3

h2 + 4, �24�

where one can take either the upper or the lower signs. The
kink solution can be obtained iteratively from Eq. �24�, start-
ing from any ��n��1. For the on-site and intersite kinks one
should take for the initial value �n=0 and �n=3/h
−	3+9/h2, respectively.

The equation of motion, Eq. �23�, linearized in the vicin-
ity of an equilibrium solution �n

0 yields

FIG. 1. Model 1, Eq. �15�: frequencies of the kink’s internal
modes for different magnitudes of the discreteness parameter h.
Results are shown for the on-site �circles� and intersite �dots� kinks.
Two solid lines show the borders of the spectrum of vacuum, Eq.
�20�. The on-site kink is unstable because the spectrum contains
imaginary frequencies, while the intersite kink is stable. All three
internal modes are below the phonon band.
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�̈n = �1 +
h2

3
��2�n + 2�n −

1

9
�6��n

0�2�n + 3��n
0 + �n−1

0 �2

	��n + �n−1� + 3��n
0 + �n+1

0 �2��n + �n+1�� . �25�

The spectrum of the vacuum solution, �n
0= ±1, is

�2 = 4 + 4
1 − h2

h2 sin2� k

2
� . �26�

On the other hand, the spectrum of linearization around a
kink is shown in Fig. 2.

C. Energy-conserving model 3

We take the DFI, corresponding to Eq. �5�, in the form

U3 

1

h2 ��n − �n−1�2 − �1 − �n−1�n�2 = 0. �27�

The equations of motion of the model of CKMS �21�,

�̈n =
U3��n,�n+1� − U3��n−1,�n�

��n+1 − �n−1��1 − h2�n
2�

= �2�n + 2
�n − �n

3

1 − h2�n
2 ,

�28�

can be obtained from the Hamiltonian

H3 =
1

2�
n
��̇n

2 +
��n − �n−1�2

h2 + V��n�
 , �29�

where the potential V��n� is given by

V��n� = −
1

h2��n
2 +

1 − h2

h2 ln��n
2 −

1

h2�� . �30�

The exact static kink �antikink� solution is �21�

�n = ± tanh�
h�n − x0��, tanh�
h� = h , �31�

where x0 is the arbitrary position of the solution.

Alternatively, the kink solution can be found from Eq.
�27�. We come to the iterative formula,

�n =
�n−1 ± h

1 ± h�n−1
, �32�

where one can choose either the upper or the lower signs and
one can interchange �n and �n−1. To obtain a kink centered
on a lattice site, one should use as a starting point the value
�n=0, while for a kink centered in the middle between two
neighboring sites, �n=1/h−	1/h2−1.

The linearized equation of motion reads

�̈n = �2�n + 2
1 + �h2 − 3���n

0�2 + h2��n
0�4

�1 − h2��n
0�2�2 �n. �33�

The spectrum of vacuum solutions �n
0= ±1 is

�2 =
4

1 − h2 +
4

h2 sin2� k

2
� . �34�

On the other hand, the spectrum of linearization around a
kink of the CKMS lattice is shown in Fig. 3.

D. Momentum-conserving model 4

Discretizing Eq. �5� as follows:

U4 

1 + h2

h2 ��n − �n−1�2 − �1 − �n−1�n�2 = 0, �35�

we come to the model reported in the work of �20� �moti-
vated by its corresponding, so-called Ablowitz-Ladik, dis-
cretization for the nonlinear Schrödinger equation �29��,

�̈n =
U4��n,�n+1� − U4��n−1,�n�

�n+1 − �n−1

= �2�n + ��n+1 + �n−1��1 − �n
2� . �36�

This non-Hamiltonian PNB-free model conserves the mo-
mentum �20� which has the form

FIG. 2. Model 2, Eq. �23�: same as in Fig. 1. Notice the differ-
ence of the mode closest to the origin which in this case remains at
�2=0 contrary to what is the case for model 1. There are three
internal modes. However, note that a fourth mode appears for h
�0.85. There is a zero mode for all values of h indicating the
absence of a PN barrier.

FIG. 3. Model 3, Eq. �28�: same as in Fig. 1. The vacuum
solution �n= ±1 is unstable for h�1. The upper edge of the phonon
spectrum lies above the scale of the figure. There are three internal
modes. A fourth mode appears for h�0.6. Note that there is a zero
mode for all values of h indicating the absence of a PN barrier.
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P4 = �
n

�̇n��n+1 − �n−1� . �37�

The exact static kink �antikink� solution is

�n = ± tanh�
h�n − x0��, tanh�
h� =
h

	1 + h2
, �38�

where x0 is the arbitrary position of the solution. Alterna-
tively, the kink solution can be found iteratively from

�n =
�n−1 ± h/	1 + h2

1 ± �n−1h/	1 + h2
, �39�

where one can choose either the upper or the lower signs
and one can interchange �n and �n−1. To obtain the on-site
�intersite� kink one should use as initial value �n=0
��n=	1+h2 /h−1/h�.

The equation of motion, Eq. �36�, linearized in the vicin-
ity of an equilibrium solution �n

0 assumes the form

�̈n = �1 + h2��2�n + 2�n − ��n
0�2��n−1 + �n+1�

− 2�n
0��n−1

0 + �n+1
0 ��n. �40�

The spectrum of vacuum, �n
0= ±1, coincides with that of

model 1, Eq. �20�. However, the spectrum of the linearization
around a kink is different as shown in Fig. 4.

E. Momentum-conserving model 5

Discretizing Eq. �5� as

U5 

1

h2 ��n − �n−1�2 − 1 + �n−1
2 + �n

2 +
1

4
��n−1

4 + �n
4�

−
1

2
�n−1

2 �n
2 = 0, �41�

we obtain another momentum-conserving model of the type
�20,24�

�̈n =
U5��n,�n+1� − U5��n−1,�n�

�n+1 − �n−1

= �2�n +
�n+1 + �n−1

4
�4 − �n−1

2 − 2�n
2 − �n+1

2 � . �42�

This non-Hamiltonian PNB-free model conserves the mo-
mentum of Eq. �37�. Static solutions in this model can be
found iteratively by solving the quartic Eq. �41�. The equa-
tion of motion, Eq. �42�, linearized in the vicinity of an equi-
librium solution �n

0, is

�̈n = �2�n + �n−1 + �n+1 −
�n−1

0 + �n+1
0

2
��n−1

0 �n−1 + 2�n
0�n

+ �n+1
0 �n+1� −

�n−1 + �n+1

4
���n−1

0 �2 + 2��n
0�2 + ��n+1

0 �2� .

�43�

The spectrum of vacuum is the same as for model 2, Eq.
�26�. Furthermore, the spectrum of the linearization around a
kink is shown in Fig. 5.

III. COMPARISON OF KINK PROPERTIES

A. Spectra of vacuum and kink internal modes

We have presented the spectra for the classical �4 model
�model 1� and for the four models free of the Peierls-Nabarro
barrier �models 2–5�. All models share the same continuum
limit; that is why, for small h, their properties are close and
they only start to deviate from each other, as h increases. If
we divide the models in groups by the quantities they con-
serve, then models 1–3 belong to the energy-conserving
group while models 4 and 5 conserve the momentum of Eq.
�37�. Models 3 and 4 have the static solutions derived in
�21,23�. Comparing the DFIs of these models, Eqs. �27� and
�35�, we note that the static solutions for model 4 can be
obtained from those for model 3 by substituting h

FIG. 4. Model 4, Eq. �36�: same as in Fig. 1. There are three
internal modes including the �2=0 mode indicating the absence of
a PN barrier.

FIG. 5. Model 5, Eq. �42�: same as in Fig. 1. A unique feature of
this discretization is the presence of the vibrational modes lying
above the phonon spectrum. There are three internal modes �includ-
ing the zero mode� and three additional modes for higher values of
h indicating the presence of modes above the phonon spectrum. The
�2=0 mode indicates the absence of a PN barrier.
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→h /	1+h2. Exact static kink solutions are given for model
3 by Eq. �31� or Eq. �32� and for model 4 by Eq. �38� or Eq.
�39�.

Exact static kink solutions for model 2 can be found it-
eratively from Eq. �24�, while the ones of model 5 can be
obtained by solving the quartic Eq. �41�. For Model 1, the
full three-point problem of Eq. �10� needs to be solved.

Comparing the spectra of the vacuum �band edges of the
spectra are shown by solid lines in Figs. 1–5�, we note the
following: �i� Model 4 has the same spectrum of vacuum as
the classical model 1, and the width of this spectrum van-
ishes only when h→�. The vacuum solution is always stable
because �2�0 for any h. �ii� Models 2 and 5 have the same
spectrum of the vacuum. The width of the spectrum vanishes
at h=1. Close to this value of h, the phonon spectrum is
narrow and hence potential phonon radiation �of a kinklike
structure due to resonance of internal mode harmonics with
the phonon band� is minimized. The vacuum solution is al-
ways stable because �2�0 for any h. �iii� Model 3 has an
h-dependent nonlinear term; that is why the lower boundary
of the spectrum is also h dependent, while in all other models
it is constant ��2=4�. In this model, the vacuum solution is
stable only for 0�h�1.

Subsequently, examining the spectra of lattices containing
a static kink, we note the following �frequencies of kink’s
internal modes are shown in Figs. 1–5 by circles and dots for
the on-site and intersite kinks, respectively�:

�i� Models 2–5 are PNB free because they have a zero-
frequency mode, which is the, so-called, translational �or
Goldstone� mode of the kink. For model 1, the corresponding
mode has a nonzero frequency �in fact, it depends on h as
exp�−�2 /h�; see, e.g., �30��, signalling the presence of the
Peierls-Nabarro barrier. Given the form of its h dependence,
for small h ��0.4�, even for model 1 this mode has a nearly
zero frequency �see Fig. 1�. This is the weakly perturbed
translational mode of the continuum �4 equation.

�ii� For small h ��0.4� and even for moderate h ��0.8�,
for all five models, apart from the translational mode we
have two kink internal modes lying below the phonon spec-
trum, one of them very close to the edge of the phonon band
��2=4� and another one in the vicinity of �2�3 �i.e., the
corresponding continuum limit of this mode �31��. Addi-
tional internal modes may emerge for large h, but we will
focus on smaller values of h �i.e., for h�0.5� in the collision
results that follow, hence we do not discuss these further
here.

�iii� Model 5, in contrast to all other models, is the model
with internal modes lying not only below but also above the
phonon band. Such modes, in contrast to the previously re-
ported ones below the band, are of the short-wave �stag-
gered� type and, for this reason, their excitation �or lack
thereof� can be sensitive to the position of the collision point
with respect to the lattice.

�iv� For h�0.6 dots and circles practically overlap in
Figs. 1–5 meaning that, within this range of the discreteness
parameter, in all models the on-site kink and the intersite
kink have shape modes with practically identical frequen-
cies. For h�0.6 one can see a considerable change in the
shape mode frequencies for the on-site and intersite kinks but

only for models 1 and 3, while in other cases the difference
remains small even at large values of the spacing and thus
for very narrow kinks.

B. Static kink profile and kink boosting

It is also of interest to compare the static kink profiles in
the five discrete models �to examine the relevant deviations
between them and the continuum limit from which they are
derived�. In Fig. 6 we present the difference between the
static kink profiles of the different models and that of the
continuum static kink, Eq. �4�. The lattice spacing is h
=0.15. It is clear that the kink in the CKMS model 3 has the
largest deviation from the continuum kink profile. Kinks in
the energy-conserving discrete models �1–3� have widths
which are smaller than that of the continuum kink while for
the momentum-conserving models 4 and 5 the situation is
reversed. Furthermore, in Fig. 7, we show how this differ-
ence between continuum and discrete kink is amplified as h

FIG. 6. �Color online� The difference between the continuum
and the discrete static kink profiles is shown for the five models at
h=0.15. The continuum static kink is given by Eq. �4� with v=0.
The kink in model 3 has the largest deviation from the continuum
kink profile. Kinks in the energy-conserving discrete models �1–3�
have a width smaller than the continuum kink while for the
momentum-conserving models 4 and 5, the situation is reversed.

FIG. 7. �Color online� The maximal difference between the con-
tinuum and the discrete static kink profiles is shown as a function of
the spacing h for the five models. The amplitude of the deviation
from the continuum kink profile increases with the discreteness pa-
rameter as h2.
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is increased. This is illustrated by showing the maximal dif-
ference between the two kinks as an h-dependent diagnostic
which reveals that the relevant difference grows as h2 as h
increases.

In order to induce collisions, the kink needs to be set into
motion in the discrete system. This can be achieved in a
variety of ways. Here we have used the most standard one,
namely Lorentz boosting the static kink to speed v, accord-
ing to the continuum ansatz:

��x,t� = ± tanh
h�n − x0� − vt

	1 − v2
. �44�

The results presented previously about the static kink also
have a direct bearing on the kink boosting. In Fig. 8 we show
the kinetic energy K�t� of a lattice containing a kink boosted
at t=0 with velocity v=0.25 through Eq. �44�. Lines of dif-
ferent thickness show the results for the five discrete models.
The lattice spacing is h=0.3 in this figure �similar, yet less
pronounced results have been obtained for smaller h; again
the relevant trend is quadratic in h�. K�t� oscillates with a
frequency close to the kink internal mode frequency of �2

�3. At t=0 we have K=0.043 and for energy-conserving
models 1–3, K�t� is below this value, while for the
momentum-conserving models 4 and 5, it is above this value.
This is in sync with the static results where it was shown that
models 4 and 5 have a correction to the continuum kink
profile of opposite sign than models 1–3 �see also Fig. 6�.
Model 3 shows the largest amplitude of kinetic energy oscil-
lations, again in agreement with the static results.

We have investigated another boosting method that uses
the dynamical solution of the form �n�t�=�n

0+vt�n, where
�n

0 is the static kink solution, �n is the normalized transla-
tional kink’s internal mode corresponding to the degenerate
eigenvalue �2=0, and v is the amplitude that plays the role
of kink’s velocity. We found this method to be very good
�internal modes were not excited in this case� for small v, as
should be the case; recall that the accuracy of the linearized
equations of motion increases as the eigenmode amplitude
decreases. However, for velocities of the order of v�0.1 the
accuracy of this method is insufficient because it does not

take into account the Lorentz correction of the kink’s width.
The ansatz of Eq. �44� takes into account this correction, but
it does not take into account the discreteness of the medium
and hence naturally it is less accurate for large h.

The best results were obtained for the use of Eq. �44�
together with the addition of the kink’s internal mode with an
amplitude chosen to compensate the excitation of such a
mode. In the present study we did not use this more compli-
cated, fine-tuned method. Therefore, even for relatively small
h, the kink boosted employing Eq. �44� carries an internal
mode of nonvanishing amplitude. This internal mode often
plays a nontrivial role in determining the outcome of the
collisions in what follows.

IV. COLLISION RESULTS

Below we compare the collision process for the five dif-
ferent discretizations. We note that the radiation in this pro-
cess is directly related to physical systems, in particular
phonons in crystals and magnons in spin �or magnetic� ma-
terials. The oscillatory, localized excitations are related to
breathers, e.g., in quasi-one-dimensional charge-density
wave metal-halogen chains experimentally observed in reso-
nance Raman spectroscopy �32�.

A. Numerical findings for different lattice spacings, initial
speeds, and kink-antikink separations

We have carried out a comparative study of kink colli-
sions under different discretizations. Our results have been
obtained for different domain sizes �i.e., lattice sizes� and
with different initial separations detailed in Table I. As illus-
trated above, all of our models share the same continuum
limit. We have compared the scattering properties for four
different �dimensionless� velocities v=0.21, 0.225, 0.24, and
0.255, respectively presented in Tables II–V. We chose these
velocities motivated by their �continuum limit� phenomenol-
ogy in the detailed examination of �10�. In each of Tables
II–V, the collision results are shown with an increment of
0.025 in the lattice spacing h for each of the different se-
lected initial separations and domain sizes. Some of the stan-
dard collision outcomes are highlighted for v=0.255 in Figs.
9–13. The most typical cases are those of Figs. 9 and 10; the
former shows the formation of a breathing wave form �i.e.,
the kink and the antikink merge, forming an oscillatory, so-
called bion, state and never separate thereafter�, a behavior
typical for sufficiently small speeds. The bion is generally
thought of as a bound state of a kink and an antikink, which
remains localized in space �in a pulselike form� and its am-
plitude is “breathing” in time; this is thought of as an ap-
proximate breather which may be weakly decaying in time.
The latter illustrates what is characterized as a “one-bounce”

FIG. 8. The kinetic energy of a lattice containing a kink boosted
at t=0 with v=0.25 with the help of Eq. �44� for the five discrete
models is shown by the lines of different thickness and style. The
lattice spacing is h=0.3.

TABLE I. Domain sizes and initial kink separations �in units of
lattice constant� examined

Domain size 80 80 160

Separation 14 28 28
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separation, a behavior typical for sufficiently large initial
speeds. However, the delicate structure of collisions for an
intermediate range of speeds may lead to additional fine
structure including multiple bounces before the eventual
separation of the two kinks, as illustrated in Figs. 11–13.

The general trend as displayed in Table II is that for ve-
locity v=0.21, when the kinks collide, they form a bion state.
In the bound state the kink and the antikink are trapped by
their mutual attraction. In the table we see that, for small
lattice spacings, the behavior of the different models is simi-
lar �as is expected, given the common continuum limit�; on
the other hand, the dynamics starts to diversify between dis-
cretizations, as the spacing is increased. Remarkably so, for

larger values of h, we observe that the collisions are more
elastic and, in fact, typically result in a single bounce for
sufficiently large h. For velocity v=0.225 �Table III� the
kinks are in a two-bounce window for small lattice spacing h
but the change in outcome with increasing h is rather drastic
�especially since the two-bounce is a rather fine-tuned colli-
sion outcome, where the internal modes control the resonant
transfer of energy from and back to its original kinetic form
�10,11,13��. We see a similar trend for the case with velocity
v=0.24 �Table IV�, whereby the kinks form a bion state in
the continuum limit but for increasing h we observe multiple
bounces. For higher h, the kinks in all five models collide
quasielastically, i.e., with a single bounce. For a kink veloc-

TABLE II. Outcome of kink-antikink collisions for v=0.21: bion formation near the continuum limit and how it changes to single bounce
for the translationally invariant �TI� models for large values of h.

Results for velocity 0.21

h

Campbell et al. Speight CKMS K1 K2

80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28

0.025 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.05 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.075 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.1 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.125 bion bion bion 4 bion bion bion bion bion bion bion bion 2 2 2

0.15 bion bion bion 4 4 bion bion bion bion bion bion bion 4 bion bion

0.175 bion bion bion bion bion 3 bion bion bion 2 2 2 bion bion bion

0.2 bion bion bion bion bion 2 bion bion bion bion bion bion bion 2 2

0.225 bion bion bion 2 bion bion bion 3 3 bion bion bion 1 1 1

0.25 3 bion bion 1 1 1 bion bion bion 2 2 2 1 1 1

0.275 bion bion bion 1 1 1 2 1 1 bion bion bion 1 1 1

0.3 2 bion bion 1 1 1 bion 1 1 bion 2 2 1 1 1

0.325 2 2 2 1 1 1 2 1 1 2 1 1 1 1 1

TABLE III. Outcome of kink-antikink collisions for v=0.225: two-bounce near the continuum limit, bion formation for intermediate h
and one-bounce for larger h in the TI models.

Results for velocity 0.225

h

Campbell et al. Speight CKMS K1 K2

80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28

0.025 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.05 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.075 2 2 2 3 bion bion 2 2 2 2 2 2 bion bion bion

0.1 2 2 2 bion bion bion bion bion bion bion bion bion bion bion bion

0.125 2 bion bion 2 2 2 4 bion bion bion bion bion bion bion bion

0.15 bion bion bion bion 2 2 bion bion bion bion bion bion bion 2 2

0.175 bion bion bion bion bion bion bion bion bion bion 2 2 bion bion bion

0.2 bion bion bion 2 bion 1 bion bion bion bion bion bion 1 1 1

0.225 3 bion bion 1 1 1 1 bion bion bion 2 2 1 1 1

0.25 2 2 2 1 1 1 1 bion bion bion 2 2 1 1 1

0.275 bion bion bion 1 1 1 1 1 1 1 1 1 1 1 1

0.3 2 bion bion 1 1 1 1 1 1 1 1 1 1 1 1

0.325 bion bion bion 1 1 1 1 1 1 1 1 1 1 1 1
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ity of v=0.255 �which is close to the critical velocity, above
which only single bounce phenomena occur in the con-
tinuum� we see an additional quite interesting feature �Table
V�. In this case, the outcomes for different models are so
sensitive that they may not converge even for very small
values of h.

Overall our results indicate that the elasticity of the colli-
sions depends strongly on the lattice spacing as well as on
the details of the particular discretization. The collisions ap-
pear to be more elastic for larger values of h, a feature which
seems to be counterintuitive given that discreteness in this
type of model is often perceived as a source of dissipation of

kinetic energy �33�. On the other hand, discreteness leads to
the excitation of additional internal modes �see Figs. 2, 3,
and 5, in particular� and hence, potentially, to more exotic
dynamical outcomes of the collisions. Furthermore, as h in-
creases the width of the phonon band decreases, hence po-
tentially limiting the range of resonant modes and therefore
the amount of radiated energy �see also the relevant discus-
sion below�. This particular feature �i.e., the apparent colli-
sion elasticity increase as a function of h� would be certainly
worthwhile of a separate and detailed theoretical investiga-
tion. From the general trends of our results, we also observe
that the most inelastic collisions occur for model 1, as might

TABLE IV. Outcome of kink-antikink collisions for v=0.24: bion formation near the continuum limit, transitions to multibounce and
ultimately single bounce collision outcomes in the TI models as h is increased.

Results for velocity 0.24

h

Campbell et al. Speight CKMS K1 K2

80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28

0.025 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.05 bion bion bion bion bion bion bion bion bion bion bion bion bion bion bion

0.075 bion bion bion 2 2 2 bion 3 3 2 bion bion bion bion bion

0.1 bion bion bion 3 2 2 bion 2 2 bion 2 2 bion 2 2

0.125 bion bion bion bion bion bion bion bion bion 3 3 3 2 bion bion

0.15 bion 2 2 2 1 1 bion bion bion bion 3 3 1 1 1

0.175 bion bion bion 1 1 1 bion bion bion bion bion bion 1 1 1

0.2 2 2 2 1 1 1 2 3 3 1 2 2 1 1 1

0.225 2 bion bion 1 1 1 bion 3 3 1 1 1 1 1 1

0.25 bion 2 2 1 1 1 bion bion bion 1 1 1 1 1 1

0.275 bion 2 2 1 1 1 2 1 1 1 1 1 1 1 1

0.3 bion bion bion 1 1 1 1 1 1 1 1 1 1 1 1

0.325 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

TABLE V. Outcome of kink-antikink collisions for v=0.255, near vc: strong sensitivity of the collision outcome on h even near the
continuum limit and transition to single bounce even for small h.

Results for velocity 0.255

h

Campbell et al. Speight CKMS K1 K2

80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28 80/14 80/28 160/28

0.0125 bion bion bion bion bion bion bion bion bion 3 bion bion bion bion bion

0.025 bion bion bion 2 bion 2 bion bion bion bion bion bion 2 2 2

0.05 2 bion bion bion 2 2 bion bion bion 2 2 2 2 4 4

0.075 bion bion bion 1 bion 2 bion 2 2 bion 2 1 1 1 1

0.1 2 bion bion 1 1 1 1 bion bion 1 1 1 1 1 1

0.125 bion bion bion 1 1 1 1 bion bion 1 1 1 1 1 1

0.15 1 3 3 1 1 1 1 2 2 1 1 1 1 1 1

0.175 1 bion 4 1 1 1 1 2 2 1 1 1 1 1 1

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.225 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.275 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.325 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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be expected by the presence of the PN barrier in that model.
Finally, one more note of caution worth making here con-
cerns the disparity between the different model results even
for small h. It is clear that such phenomena as the outcome of
collisions depend strongly and sensitively on a variety of
factors �including, e.g., the internal mode excitations, the lo-
cation of collision point, etc.� to an extent that one should not
expect identical collision outcomes among these models
even relatively close to the continuum limit �which the mod-
els share�.

B. Initial distance between colliding kinks

In what follows, we briefly analyze one of the sources of
the above-mentioned sensitivity of the collision outcome,
namely the original distance between the kink and the anti-
kink. We also quantify in a characteristic, in our view, way
the increase in collision elasticity through the dependence of
the critical speed separating bion formation from one-bounce
collisions as a function of the lattice spacing h.

In Fig. 14 we show the kink velocity after the collision as
a function of initial collision velocity in model 3 at h=0.15.
Dots show the results for initial distance between kinks of
14, while open circles for the initial distance of 14.8. One
can notice a strong sensitivity of the collision outcome to the
initial separation distance. This is because of the internal
mode being excited when boosting the kinks. By changing
the initial distance, we change the phase of the internal mode
at the collision point, which, in turn, critically affects the

result of the collision. For different models, the sensitivity of
the collision outcome to the initial kink separation correlates
with the amplitude of the kink’s internal mode excited ini-
tially �see Fig. 8�. Thus the sensitivity is highest for model 3
and lowest for model 5. The sensitivity also decreases rap-
idly with decrease in h and the reason is, essentially, the
same: the amplitude of the excited kink’s internal mode de-
creases as h2.

C. Threshold velocity vc as a function of h

It is well known �see, e.g., �11�� that there exists a thresh-
old velocity vc such that collision of kinks with v�vc leads
to separation after the first collision while for collisions with
v�vc, the first collision cannot lead to separation. In the
latter case, the reflection windows discussed in �11� can be
observed amidst regions of bion formation. In Fig. 15 we
show for the five models how vc changes with h. These re-
sults were obtained similarly to the ones presented in Fig. 14,
i.e., from the outcome obtained for different initial separa-
tions of kinks; vc was then estimated from a least-squares fit
to the expression const	 �v2−vc

2�1/2 suggested in �11�. This
way, the effect of the initial separation was averaged out.

In all models vc decreases with increase in h implying that
for larger h the collisions are more elastic. The standard dis-
cretization �model 1� shows the weakest dependence of vc on
h, while in models 2 and 5 this dependence is strongest. For
discreteness parameter as small as h=0.025 all models show
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FIG. 10. �Color online� One-bounce collision for model 2 with
h=0.1, kink velocity=0.255, domain size=80, kink separation=14.
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FIG. 11. �Color online� Two-bounce collision for model 4 with
h=0.05, kink velocity=0.255, domain size=80, kink separation
=28.
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FIG. 12. �Color online� Three-bounce collision for model 1 with
h=0.15, kink velocity=0.255, domain size=80, kink separation
=28.
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FIG. 9. �Color online� Bion formation for model 3 with h
=0.05, kink velocity=0.255, domain size=80, kink separation=28.
Note the radiation �phonons� emanating from the bion.
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almost the same vc because they all share the same con-
tinuum limit. The difference in the results between model 3
and model 4 at h=0.125 is within the numerical error. Recall
that model 3 shows the strongest sensitivity of the collision
outcome with respect to the initial kink separation; that is
why the error in the estimation of vc is the largest for this
model.

Since the PN barrier is very small at h�0.1, the observed
effect can hardly be explained through the influence of the
PN barrier. As one possible explanation of the dependence of
vc on h, we discuss the burst of radiation emitted during
collision. Corresponding numerical results are presented in
Fig. 16 for kinks colliding with v=0.26 in the Speight lattice
�model 2� with two lattice spacings, h=0.1 and h=0.15. This
is the highest velocity we use in our simulations. We show
the kinetic energy of radiation �in order to exclude the kinetic
energy of the moving kinks, an area of width equal to 4
around each kink was not included in the computation of the
kinetic energy� as a function of the time after collision. Dots
show the results for h=0.1 and open circles for h=0.15. The
amount of radiated energy grows with time due to the emis-
sion from the kink’s internal modes excited at the collision.

Extrapolation of the data presented in Fig. 16 to t=0 sug-
gests that, in the case of h=0.1, the collision results in the
burst of kinetic energy �in dimensionless units� of 8.7
	10−3, while a smaller burst of radiation of 6.8	10−3 takes

place in the lattice with higher discreteness of h=0.15. The
fact that the burst of radiation is smaller in the lattice with
higher discreteness can be related to the phonon spectrum
width, which decreases with h as 1/h for small h, for all five
models. The narrower the phonon band, the smaller the
amount of energy that can be radiated and the more elastic
the collision.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have analyzed the properties of a
number of recently proposed discretizations of the con-
tinuum �4 field theory in the vicinity of �and further away
from� the continuum limit. The relevant analysis consisted of
the examination of the static properties of the models, con-
cerning their fundamental nonlinear wave solutions, namely
the kinks �and antikinks�. For these types of solutions, we
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FIG. 13. �Color online� Four-bounce collision for model 5 with
h=0.05, kink velocity=0.255, domain size=80, kink separation
=28.

FIG. 14. Kink velocity after collision as a function of collision
velocity in model 3 at h=0.15. Dots show the results for initial
distance between kinks of 14, while open circles for the initial
distance of 14.8.

FIG. 15. Critical velocity vc as a function of h for the five
models. In all models, vc decreases with increase in h implying that
for larger h collisions are more elastic. The classical discretization
�model 1� shows the weakest dependence of vc on h, while in mod-
els 2 and 5 this dependence is strongest.

FIG. 16. Kinetic energy of radiation as a function of the time
after a collision in model 2. Dots show the results for the lattice
spacing h=0.1 and open circles for h=0.15. The collision velocity
is v=0.26. Radiated energy growth with time is due to the coupling
of the kink’s internal modes with the phonon band. Extrapolation of
the data to t=0 suggests that in the case of h=0.1 the collision
results in the burst of �dimensionless� kinetic energy of 8.7	10−3,
while a smaller burst of radiation of 6.8	10−3 takes place in a
lattice with higher discreteness of h=0.15.
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have examined how to obtain them, in what ways they differ
from their continuum siblings, as well as the spectral prop-
erties of the linearization around such solutions. In particular,
we have computed both the phonon �continuous� spectrum,
as well as discussed the internal �or shape� modes present in
the models.

On the other hand, we have also examined dynamic prop-
erties of the kinks by studying their collision and comparing
or contrasting their outcomes across the different discretiza-
tions. In that regard, we have observed a variety of interest-
ing results. In particular, we have seen that the models only
align with their continuum limit �especially as regards sensi-
tive collision phenomenology� extremely close to the con-
tinuum limit �i.e., for spacings of O�10−2��. In fact, in some
cases �e.g., for the CKMS model and v=0.255�, the results
are not independent of factors such as lattice spacing and
kink-antikink separation even for the smallest h used herein
�h=0.0125�. This is rather remarkable given that the scale of
the kinks themselves is considerably wider, hence one might
not expect this result on the basis of length-scale competi-
tion. However, we have argued that this should be attributed
to the �initial-boost induced� excitation of the internal modes
of the kink whose coupling to the continuous spectrum sen-
sitively affects the collision outcome, as has been substanti-
ated previously �10–13�. This should operate as a significant
note of caution to researchers conducting numerical experi-
ments with these models in an attempt to describe their con-
tinuum limits. Furthermore, this conclusion should be of in-
terest to experimentalists conducting such collision
experiments in realistic systems ranging from the simpler
arrays of coupled torsion pendula �emulated by the discrete
sine-Gordon equations �34��, to more complex microme-
chanical cantilever arrays �35� or waveguide arrays in non-
linear optics �36�, as it may significantly affect their obser-
vations.

Furthermore, we have seen that the elasticity of collisions
varies not only from model to model, but even with increas-
ing spacing of the lattice. In particular, we have illustrated
through our numerical observations that the most inelastic
collisions take place in the model that does have a Peierls-
Nabarro barrier, while PNB-free models feature more elastic
collisions. Moreover, there is a very interesting �and worth-
while to investigate further, possibly theoretically as well�
dependence of the critical speed for single-bounce collisions
on the lattice spacing h. In particular, vc rapidly decreases as
a function of h, rendering coarser collisions more elastic.
This should also be attributed to the spectral properties of the
models and the decreasing width of the phonon band for
increasing h, which activates fewer couplings of internal
mode frequency harmonics with the continuous spectrum
and hence leads to weaker “dissipation” and consequently to
more elastic collisions.

While the static properties of the kinks have been ob-
tained to a large extent explicitly from the underlying dis-
cretized first integral formalisms, kink collisions are natu-
rally much harder to analyze theoretically for the presented
discrete models. However, some of the relevant features such
as the dependence of vc on h may be, to a certain degree,

tractable �see, e.g., �13� and references therein�. Hence it
would be particularly interesting to seek a deeper under-
standing of the features numerically observed herein and
how these can be associated with the nature of the underly-
ing discretized nonlinearity. Such studies are currently in
progress.

Another interesting notion that has often proved particu-
larly useful in extracting information about standard discrete
models is that of the anticontinuum limit. Physical effects
such as the ones observed in classical discrete models in the
anticontinuum limit can also be observed in the translation-
ally invariant latices but one should be aware of the follow-
ing remarks. The anticontinuum limit in the classical �4 dis-
cretization is achieved as h→� when the linear coupling
term disappears and the particles become uncoupled. In the
vicinity of this limit, it is well known �33� that solitary waves
are not mobile �and hence the issue of collisions is not par-
ticularly relevant�. However, translationally invariant models
are considerably different than their standard counterparts in
respects related to this limit, since the coupling occurs not
only by means of the linear term but also due to the many-
particle character of the nonlinear terms. In view of that, it is
not straightforward in some models �as, e.g., models 4 and 5
discussed herein� to even define this limit. A somewhat re-
lated observation is that in classical models, in the anticon-
tinuum limit the kink width vanishes and so does the phonon
band width. The same effects can be observed in some of the
translationally invariant models at finite h, for example, for
the models 2, 3, and 5 this happens at h=1 �see the kink
spectra shown in the corresponding figures�. Zero width of
the phonon band implies no interaction of a localized vibra-
tional mode with the phonon band, hence easy localization of
energy in such lattices and the existence of various kinds of
intrinsic localized modes. Again, in contrast to the standard
discretization, the anticontinuum limit in the translationally
invariant models occurs at finite h. This makes the study of
the anticontinuum limit for the translationally invariant mod-
els �and appropriately crafted potential comparisons of that
with their standard discretization counterpart� an intriguing
subject for future work.

Kinks model topological defects that can transport energy,
momentum, mass, electric charge, etc. Therefore as the
physical consequences of the results reported in the present
study one can regard, for example, the better transport prop-
erties of the translationally invariant discrete models in com-
parison to those of the standard discretization. Indeed, in the
translationally invariant models kink collisions were found to
be more elastic, resulting in the smaller threshold escape
velocity vc. To this it should be added that the kinks in the
translationally invariant lattices possess the Goldstone mode
which means that they are not trapped by the lattice and can
be accelerated by even weak external fields. A consequence
of this feature is that these kinks are not bound by the
Peierls-Nabarro potential barrier and their collisions are, in
fact, often �counterintuitively� more elastic for higher values
of the discreteness parameter. The latter is true even for rela-
tively small speeds �for which the standard discretization
leads to bion states after the collision�.
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Our findings, developed for a prototypical discrete lattice
with the cubic nonlinearity, may be expected to be of rel-
evance to a wide variety of more complex, realistic physical
systems ranging from Bose-Einstein condensates �1�, nonlin-
ear optics �2�, dynamics of DNA �3�, quasi-one-dimensional
waves in conducting polymers �4,11�, charge-density-wave
in metal-halogen chains �32�, structural phase transitions in
ferroic materials �5� to cosmology �10� and field theory �21�.
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